Anonymity Online

194.144 Privacy-Enhancing Technologies

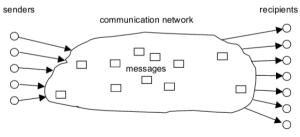
Dr. Markus Donko-Huber

Outline

- Online anonymity
- · High-latency anonymity systems
 - Remailer
- Low-latency anonymity systems
 - Onion routing
 - DC nets
 - Broadcast traffic
- Private file-sharing

Anonymity online I

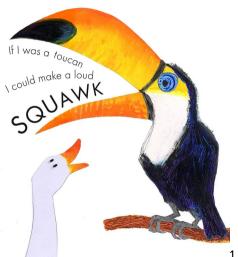
Anonymity online II



Anonymity Systems

- anonymity
 - From ancient Greek "without a name" or "namelessness"
 - Meaning: not being identifiable
- anonymity systems: unlinkable communication

Anonymity Set


"Anonymity is the state of being not identifiable within a set of subjects, the anonymity set."

[Pfitzmann, 2000]

- Anonymity requires a peer group/set
- Well-defined group of individuals
- The bigger the better
 - Example: general suspicion if you use Tor http://sz.de/1.2029100

Anonymity Set: Suzy Goose

¹(C) Petr Horácek

Anonymity Set: Suzy Goose

basic terminology

- Pseudo-anonymity
- Unlinkability
- Sender anonymity
 - Sender of a message cannot be determined
- Recipient anonymity
 - Recipient of a message cannot be determined
- Relationship anonymity
 - Messages cannot be attributed to a pair of users
- Unobservability
 - Cannot be determined if specific user sent messages at all ²

Pseudo-anonymity

- Fake names = pseudonyms
- Examples
 - nicknames, alias (showbiz name)
 - student number
 - email addresses, telephone numbers
 - usernames, user IDs
 - bank account / credit card numbers

Unlinkability

- Can (pseudonymous) information be linked for de-anonymization?
- Example: Wikipedia entries
 - Anonymous entries at Wikipedia (no user account / pseudonyms)
 - \circ IP addresses of entries \rightarrow organizations
 - See https://en.wikipedia.org/wiki/WikiScanner
 - Possible solution: use proxies or Tor
- Example: Anon Ops press release
 - File released on one-click hoster, IP address unknown
 - metadata of file: name of its author
 - See Spokesman leaves name in PR meta data

Demo: Linkability

Attacks on anonymity systems

Active attacks

- Compromise of software (security/implementation bugs)
- Malicious users (sibyl attacks): denial of service, modification of messages
- Infiltration (also for passive attacks)

Passive attacks

- Global observer
- Correlation over timing/content (also when encryption is used)

Internet anonymity

- Complex challenge
 - Multitude of attack vectors
 - Hard to be done correctly
- Needed by reporters, whistleblowers, average user ...
- Two broad classes of online anonymity systems
 - High-latency systems
 - Low-latency systems

High-latency systems

High-latency systems

- For message-based communication
 - E-Mail, Usenet postings, ...
- Anonymous e-mail messages
- Slower message transmission is acceptable (asynchronous)
 - Not possible for e.g. web browsing
 - Messages might be delayed for hours/days

Penet Remailer anon.penet.fi

- Founded 1993 by Johan Helsingius
- Pseudoanonymous remailer for email and usenet
- How did it work?
 - 1. User sends email to remailer
 - Remailer removes sensible information (sender, ip address of used SMTP Servers etc.)
 - 3. Remailer forwards E-Mail with different sender address e.g. pseudo@anon.penet.fi
 - 4. Remailer stores link for answers: e.g. leet@tuwien.ac.at → pseudo@anon.penet.fi

Penet: Singe Point of Failure

- Database with links from real addresses to pseudonyms
- Compromise of anon.penet.fi server \rightarrow compromise of (pseudo)anonymity
 - First rumors at DEFCON III (1994)
- 1995 Scientology
 - Internal documents released at alt.religion.scientology
 - User '-AB-'
 - Scientology contacts FBI and Interpol
 - Finnish police enforces release of user information
 - Full story: "What Really Happened in INCOMM" (2003)
- Project terminated 1996

alt.anonymous.messages (amm)

- Usenet group from 1994
- All users post to the same mailbox
- · Use of asymmetric cryptography
 - Alice gets all messages of the usenet group but can only read messages from Bob
- DEFCON 2013
 - De-anonymization of amm users (PGP Key-ID, outdated crypto)
 - https://ritter.vg/blog-deanonymizing_amm.html

Chaum Mix

Chaum Mix

- Base of modern anonymity systems
- David Chaum: "Untraceable electronic mail, return adresses, and digital pseudonyms", Communications of the ACM, 1981
- Chaum Mix
 - Order of sent messages != order of received messages
 - Messages are split into equal chunks and padded
 - Hinders de-anonymization based on analyzing the network traffic

One-hop mix

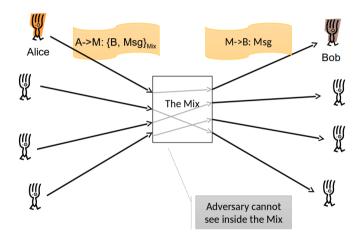
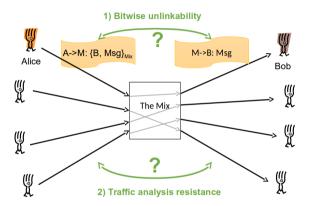



Figure: Basic Mix, George Danezis, UCL

Chaum mix properties

- unlinkability: use of cryptography, message chunking
- traffic analysis: reordering of messages

Broken Mix: no reordering but FIFO

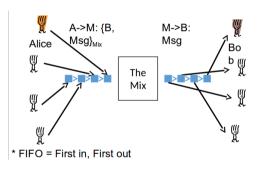


Figure: FIFO Mix, George Danezis, UCL

Attackers can link senders to recipients by observing the mix.

Protection against traffic analysis

Figure: Mix Batching / Pooling, George Danezis, UCL

Threshold sends all messages once certain number of messages reached (Chaum), pooling: some messages are kept back.

Statistical disclosure attacks on threshold mixes

For each round where Alice sends a message, mark down recipients. After n round, which users received the most messages?

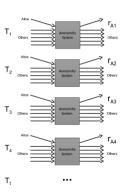
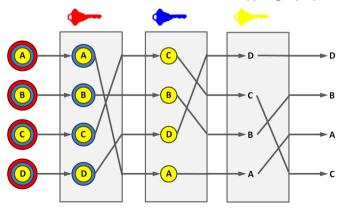



Figure: Mix Batching / Pooling, George Danezis, UCL

Chaum Mix Network

- Chaum Mix Network (Mix networks)
 - Chaining of multiple Chaum mixes (Russian dolls)
- Made possible with Public Key Cryptography (1976)
 - Diffie, Hellman: "New Directions in Cryptography"

Remailer

Remailer based on Chaum mixes

- Cypherpunk anonymous remailer, beginning of '90s (Remailer type I)
 - Messages are sent encrypted to the remailer
 - Remailer decrypts messages and forwards it to the recipient
 - Cascading remailers is possible
 - No answers possible
- Mixmaster, mid '90s (Remailer type II),
 - Last version released 2008
 - Each message is split into equally sized chunks and messages are reordered
 - Basically an implementation of a Chaum Mix

Remailer based on Chaum mixes II

- Mixminion, 2003 2007 (Remailer type III)
 - Reordering of messages (pooling)
 - Batch-based sending (batching)
 - Equally sized messages
 - All communication between mixes is encrypted (TLS)
 - Answers possible with "single-use reply blocks"
 - Protection against denial of service attacks
- Open problems
 - Traffic analysis with denial of service attacks (attacker overloads mix with dummy traffic)
 - No active development / further projects, spam

Mixmaster 3.0 Demo

mixmaster et al. seem defunct :(

Youtube: Mixmaster Demo by Steven Murdoch

Low-Latency systems

Low-Latency systems

- Delays for a couple of hours are unacceptable for many of today's Internet services
 - Examples: HTTP, SSH, instant(!) messaging
- Low Latency systems
 - Enable interactivity
 - Goal: anonymity with as little delay as possible
- Challenges
 - Factor time cannot be used to hinder traffic analysis
 - Multitude of different applications
 - near real-time applications such as VOIP

Simple low latency systems

- Protocol-dependent services
 - Open HTTP proxies for web surfing
 - Chaining of proxies possible
 - Websites that act as proxies (e.g. http://anonymouse.org)
 - Bouncer (BNC) for FTP, IRC
 - Discard email addresses

```
- http://www.spambog.com/
- http://www.mintemail.com
- http://www.filzmail.com
```

Problem: Single Point of failure (cmp. penet remailer)

Proxies and VPNs

Problems with proxies

- Users can be de-anonymized via JavaScript / Java / Flash
- Anonymity-software (e.g. Tor browser bundle) therefor uses modified web browsers
- Example online test to check for leaking information:

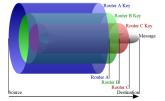
```
o http://ip-check.info/
```

Example Web Proxy: Ultrasurf

- Initially developed to provide an anti-censorship service for Chinese web users
- "Ultrasurf: Privacy, Security, Freedom"
- Client-software for MS Windows
- Connection via TLS to ultrasurf proxies
- Not a privacy tool!
 - Ultrasurf logs, certain websites blocked, Flash/JavaScript
 - https://media.torproject.org/misc/ 2012-04-16-ultrasurf-analysis.pdf

VPN Services

- VPN = protocol-independent service
- How to decide on a provider
 - Logging policies
 - http://goo.gl/DQ1uo5
 - Supported encryption protocols
 - PPTP: simple to crack (e.g. Moxie's CloudCracker)
 - IPSec completely broken by NSA?
 - https://thatoneprivacysite.net/
- VPN via own VPS
- Issues
 - Provider trust: Linkable via payment provider, IP addresses
 - Leaks: IPv6, DNS, WebRTC


VPN Services: recent incident(s)

- "UFO VPN" incident July / 2020
 - "Zero logs" VPN service based in Hongkong
 - 894 GB on unsecured Elasticsearch cluster
 - Passwords (in plain), IP addresses, connection timestamps.
 - for details see: blog post
- Brief summary of issues with (free) VPN provider
 - Free VPNs are bad for your privacy

Mix Networks

Onion-Routing

- Based on the research of Chaum
- Cascade of onion routers (mix network)
- · Most popular use of onion routing: Tor
 - Covered in detail in separate lecture
- Onion Routing != Tor
 - Tor: global network view
 - Hidden services
 - Out-proxies

Example Mix Network: Java Anon Proxy (JAP) aka JonDonym

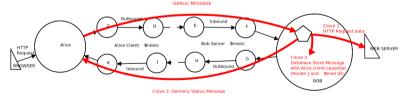
- Based on research project of TU Dresden, Universität Regensburg
- Java implementation for all common operating systems
- Static set of mix nodes, new mixes must get certified
- Difference to Tor: not everybody can operate a mix
- · Free version and payment model
 - https://www.anonym-surfen.de/
 - Free version limits bandwidth

JonDo Demo

Law enforcement and JonDonym

- 2003 the German Bundeskriminalamt enforced the collection of network information by JonDonym
- Logs for a given set of websites
- 2006 a JonDonym server had been seized
- Overview of requests by law enforcement
 - https://www.anonym-surfen.de/strafverfolgung.html
- Data retention law (2006/24/EG)
 - Adapted by a number of JonDonym mixes
 - Timestamps and connection logs
 - De-anonymization requires data from all three mixes of a path

Garlic Routing


- Foundation of the Invisible Internet Project (I2P)
- Layer-based encryption
 - Basic idea: Chaum mixes / Onion Routing
- Messages are bundled
 - Messages are merged into Bulbes/Cloves
- ElGamal/AES + SessionTag
 - Combination of asymmetric and symmetric encryption methods

Example Garlic Routing: I2P

- Based on Java, active development since 2003
- Available for common desktop OSs and Android
- I2P Router creates local proxy (4444/TCP)
- I2P Applications
 - Filesharing (BitTorrent, eMule, Gnutella)
 - E-Mail (Postman, I2P-Bote)
 - Instant messaging (I2P Messenger)
 - Publishing (Syndie)
 - Distributed file-system/storage (Tahoe-LAFS)

Garlic Routing: I2P

- Tunnels to other I2P nodes are created (incoming / outgoing tunnels)
- Use focuses on "Darknet" applications (as opposed to Tor)

I2P Demo

Problems with Onion/Garlic Routing

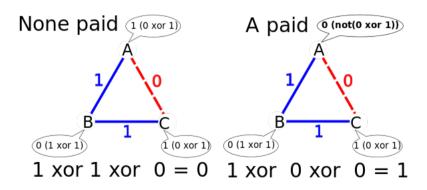
- Global Observer
 - Entities that can monitor the "entire" Internet (cmp. Snowden Leaks)
- Analysis of each mix node's traffic
- Correlation of user traffic entering and leaving the mix network
 - Which user has seen which website at which time?
- Correlation is practical with little resources (e.g. Tor: 100MBit + six month time, see http://goo.gl/267e9z)

Experimental

Anonymity Systems

Anonymity-systems with protection against global observers

- Simple "Broadcast Ring"
 - Every user creates a key-pair and public key if accessible to everyone (public key must not contain personal information)
 - Users publish encrypted message or random message in fixed time intervals
 - Large network overhead
- Dining Cryptographers
 - Information-theoretical safe, "simple system" based on e.g. RSA
- Broadcast / Cover Traffic systems
 - Similar to "Broadcast Ring" with optimizations for network overhead


Dining Cryptographers Problem

- A group of cryptographers goes out for dinner, once they want to pay, the waiter tells them that their food has already been paid for.
- How can they determine if one of the cryptographers or the NSA paid, without knowing who paid?
 (Dining Cryptographers, Chaum 1988)

Dining Cryptographers (DC) algorithm

- Every pair of cryptographers shares a secret
 - Coin-flip behind menu
- Every cryptographer
 - XOR over all shared secrets
 - If he/she did not pay: result of XOR
 - If he/she paid: negates result of XOR
- Final result
 - XOR over all cryptographer's results
 - 1: Somebody at the table paid
 - o : Nobody at the table paid

Example: Dining Cryptographers

Advantages of DC-Nets

- The simple DC-net algorithm can be used to transmit any type of information
 - e.g. in most ineffective way per Bit
- DC-nets provide strong anonymity
 - Analysis of network traffic does not reveal anything
 - Senders and recipients can not be linked

Drawbacks of the original DC-net algorithm

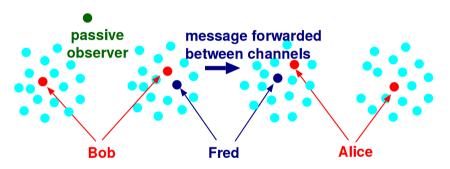
- Collisions
 - Invalid results if two cryptographers pay
- Disruptions
 - Malicious cryptographer could send random bits
- Complexity/Scalability
 - DC-net algorithm with multiple participants problematic
- Practical use
 - Secure channel for group-wise exchange of secrets
 - Long messages

Example DC Net: Herbivore

- Response to FBI program "Carnivore" (2000)
 - Carnivore (Fleischfresser), Herbivore (Pflanzenfresser)
 - Project of Cornell University
 - https://www.cs.cornell.edu/People/egs/herbivore
- Strong anonymity
 - Senders, recipients can not be detected (active/passive attacks)
- Scalability
- Robust against attacks

Herbivore Design

- Network is collection of smaller/local DC-Nets
- Algorithm for global topology
- Network is segmented into "anonymity cliques"
- Slots to send messages
- Out-Proxy / Darknet


Example DC Net: Dissent

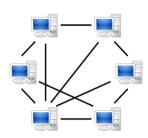
- Project at Yale University, published around 2010
- http://dedis.cs.yale.edu/dissent/
- Scales up to \sim 1000 participants
- Detection of malicious participants (with cryptographic shuffles)
- Main use for broadcast applications (wikis, auctions, e-voting)

Broadcast/Cover Traffic systems: P⁵

- P⁵ (Peer-to-Peer Personal Privacy Protocol)
- http://www.cs.umd.edu/projects/p5/
- Optimization of the simple "broadcast ring"
- Users are split into broadcast groups
- Noise / Cover Traffic
 - If no message is send, random cover traffic is transmitted

P⁵: Broadcast Groups

P⁵ Broadcast Groups: if users are not in the same broadcast group, messages are forwarded


DC nets and broadcast systems

- Until today limited to research prototypes
 - No active software development
- DC-Nets scale up to a couple of 1,000 users
- Not in widespread use
- Network / performance overhead

Private File-Sharing

Private P2P systems

- Decentralized applications for filesharing (Peer-to-Peer, P2P)
- Goals
 - Censorship resistance (motivated by Napster)
 - Anonymity
- Challenges
 - Distributed search index
 - Detection of other peers

P2P network [Wikimedia]

central network [Wikimedia]

Anonymous P2P systems

Freenet

- Ian Clark, University of Edinburgh, first version 2000
- https://freenetproject.org/

Goals of Freenet

- Protection against Internet censorship
- anonymity (sender, recipient)
- availability, robustness, scalability

Freenet architecture

- Every freenet user contributes storage
- Static websites (freesites) and files

Freenet: Architecture

GUID

- Files are identified via GUID (globally unique identifiers)
- Content-hash keys: SHA1 of a certain file
- Signed-subspace keys: personal namespace (world readable, writable only by creator), e.g. surveillance/us/snowden-leaks

anonymity

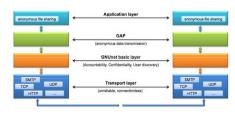
- Chaum Mix nets
- Opennet mode
 - Automatic peering with other freenet users
 - Relatively simple to block
- Darknet mode
 - Friend-2-Friend networks
 - Higher anonymity and harder to block (no central components)

Freenet Demo

InterPlanetary File System (IPFS)

• IPFS³

- distributed file system
- content-addressing in global namespace
- Web gateways for access without local node
- Native support in Brave, Opera for Android
- IPFS vs. Freenet
 - IPFS is optimized for performance vs. anonymity
 - IPFS nodes only store content explicitly
 - IPFS as a PET: anti-censorship⁴


³https://ipfs.tech

⁴2017 Catalan independence referendum

GNUnet

- Framework for decentralized P2P networks
 - o https://gnunet.org/
- Different transport plugins
 - TCP, UDP, HTTP, HTTPS, WLAN, Bluetooth
- Encrypted communication links (RSA + AES 256)
 - Messages: 1kB blocks
- anonymity via "GAP"

Ifidis.net

61/64

Self-Hosting (web services)

Self-hosting web services

- Major online services controlled by few companies
- Self-hosting == "private cloud"
 - Nextcloud for Files, Calendar, Contacts
 - Tahoe-LAFS for encrypted, distributed storage
 - matrix decentralized communication
- Self-hosting challenges
 - (steep) learning curve
 - Bandwidth / VPS costs
 - Privacy will always depend on your peers

Anonymity systems overview

method	example	use-case	advantage	disadvantage
pseudonyms	penet.fi	E-Mail	sender pseudonymity	single point of failure
Remailer (Type I,II,III)	mixmaster	E-Mail	sender-anonymity	No active development, active attacks
proxies	zend2.com	Web	simple usage	Provider trust, plugin leaks
VPN	Mullvad, NordVPN	Web	simple usage, protection (public WiFi)	Trust in Provider, network leaks
onion- routing	Tor	Web	simple usage, large com- munity	global observer, speed
garlic- routing	I2P	Darknet (Filesharing, E-Mail, etc.)	inbuilt applications	global observers, small community
DC nets	Herbivore, Dissent	broadcast applications	strong sender/recipient anonymity	No user base, academic prototypes
Decentral P2P	GNUnet, freenet	filesharing	censorship resistance, anonymity	performance, community

Conclusion

- High-Latency anonymity systems
 - For message-based communication
 - Chaum mix networks
 - protection against global observers
 - asynchronous communication (delays)
- Low-Latency anonymity systems
 - VPN, Proxies
 - Onion Routing
 - Tor, I2P \rightarrow popular anonymity networks
 - DC-nets/ Broadcast systems
 - strong anonymity
 - Performance / usable implementations
 - Anonymous Filesharing systems
 - de-central, anonymous, censorship resistant